
Data Legibility In Decision S upport Systems

Marc Demarest
demarest@hevanet.com

Revision 7.4
November 2001

ABSTRACT

Data legibility -- knowledge workers' ability to understand fully and immediately the data
contained in a decision-support system (DSS) -- is the single most difficult problem in
client/server DSS design. To be effective, DSS environments must provide readable,
clear, and navigable data to the knowledge worker or end user. Also, the data must
present itself in a fashion consistent with knowledge workers' business models, and
must promote swift and simple formulation of business questions consistent with
knowledge workers' goals.

A version of this paper appeared in DBMS Magazine in May of 1994 (v7 n5 p55). This
appearance was the first systematic treatment of the concept of multi-dimensional
schema (MDS), also known as data cubes or star schema, and the relationship between
MDS design and large-scale decision support.

Although the concept of multi-dimensional schema design, and the architectural model
of combining a single warehouse and multiple marts into an enterprise-wide decision
support environment, are now taken for granted by most DSS architects and system
builders, at the time the article was published, the concept of denormalization was
extremely controversial.

Copyright © 1996-2002 by Marc Demarest. All rights reserved.

Unrestricted distribution is permitted in original form with all attributions and citations included.

Authoritative source: www.hevanet.com/demarest/marc

Data Legibility In Decision Support Systems Marc Demarest

Revision 7.4 Page 2 of 2 1/24/2002
Copyright © 1996-2002 by Marc Demarest

demarest@hevanet.com

Introduction: Understanding Data As A Computer User

Data legibility -- knowledge workers' ability to understand fully and immediately the data
contained in a decision-support system (DSS) -- is the single most difficult problem in
client/server DSS design. To be effective, DSS environments must provide readable,
clear, and navigable data to the knowledge worker or end user. Also, the data must
present itself in a fashion consistent with knowledge workers' business models, and
must promote swift and simple formulation of business questions consistent with
knowledge workers' goals.

Organizations interested in DSSs, but not familiar with the problem of data legibility,
typically employ replication or consolidation strategies to build their initial systems.
Because these strategies do not take data legibility into account, the DSS environments
are usually significantly less useful to knowledge workers than they should be.
Conversely, organizations interested in DSSs, and familiar with the problem of data
legibility, typically employ reschematization or aliasing strategies to rebuild production
data into DSS data, which produces significant, strategic DSS environments.

The choice of a data legibility strategy -- reschematization or aliasing -- has a number of
DSS performance implications and depends on a combination of factors, including the
skill level, scope of operations, and business requirements of the knowledge worker
community; the corporate strategy with respect to software development; and the cost
model and constraints associated with the DSS project itself.

But first, let's take a look at why data legibility is important in the workplace.

Data Legibility In Decision Support Systems Marc Demarest

Revision 7.4 Page 3 of 3 1/24/2002
Copyright © 1996-2002 by Marc Demarest

demarest@hevanet.com

Data Legibility

To build a DSS environment that connects knowledge workers directly to the corporate
data they need in order to make effective, informed, and comprehensive business
decisions, the DSS data on which knowledge workers operate must be legible; that is, it
must be easily understood, assimilated, and manipulated. Because data retrieval from
the DSS data store is just the beginning of a complex decision-making process,
misunderstandings or misinterpretations of the DSS data caused by legibility problems
will always result in flawed or misdirected decisions, which immediately destroys the
customer or shareholder value at stake in the decision-making process.

Knowledge workers can immediately and intuitively recognize legible data as either a
business object (invoice number, employee ID, customer, and so forth), a component of
a business model employed by the knowledge worker in the decision-making process
(markets or products, for example), or a dimension of time (day, week, month, quarter,
or year). You can intuitively recognize the words on this page without consulting a
dictionary or asking a coworker for help; legible data should be equally as obvious. It is
there for knowledge workers to seize and use.

Unfortunately, the data from OLTP and other production systems drives most initial DSS
implementations. Computer processes serving data-entry personnel enter this
production data, which is then stored in systems that are designed and maintained by
database administrators (DBAs) and system programmers. While the data in these
production systems is no doubt legible from the DBA's perspective, it is usually illegible
from a non-technical knowledge worker's perspective. This illegibility has implications for
data delivery, the DSS data store, and the client applications accessing the data store.

Data Legibility In Decision Support Systems Marc Demarest

Revision 7.4 Page 4 of 4 1/24/2002
Copyright © 1996-2002 by Marc Demarest

demarest@hevanet.com

Replication and Consolidation

Organizations embarking on their first DSS implementations typically provide data to an
end-user organization by copying data from one or more production systems to another
system. They then open this data warehouse or store to knowledge workers who, in
theory, use off-the-shelf, client-based applications to access and retrieve relevant data.
This approach attempts to alleviate the problem of query drain -- a common operation
problem in which the CPU and I/O drain from a single complex query temporarily
impedes a production system's OLTP performance. Ironically, IS professionals often
report the same phenomenon when these warehouses and stores are first opened to
knowledge workers. Subsequently, the usage pattern changes, as follows:

1. An initial access surge occurs immediately after the warehouse or store is opened for
use.

2. Almost immediately thereafter, use drops of dramatically. After a few weeks, only a
handful of users implement the DSS.

3. Subsequent interviews reveal that a select group of technically inclined end users in
the original target end-user community perform all the query and reporting work
against the warehouse or store, for both themselves and other users.

This trend is easy to understand. Most end users cannot understand the data they have
been given because it is illegible. There may be hundreds of tables, each with cryptic
names, containing thousands of equally cryptic columns. Data, such as dates, which
should be commonly understood, appear as strings of apparently random numbers (for
example, dates may be stored in an M4DATE format appropriate for OLTP transaction-
level data). And finally, assuming the end users understand the concepts of joins and
foreign keys, multiple join path seem to exist between any set of tables, suggesting
multiple ways of asking the same question.

Despite these deficiencies, IS professionals persist in delivering data to end users in the
form of normalized schemas with cryptic data sets and multiple complex join paths. In
many cases, this situation exists because data normalization is a bedrock IS process --
the foundation on which data integrity in the enterprise is based.

Normalization, as a complex technical discipline, has several advantages for data
integrity in an OLTP environment, but works strongly against data legibility in a DSS
environment, as follows:

• A large number of tables. The goal of schema normalization is to separate
independent bits of information into logical units (columns and tables) that roughly
map to entities such as customer or shipper, or to attributes (or characteristics) of
those entities. It is common, in complex activities such as manufacturing, to find
databases with more than 1000 tables.

• Multiple join paths between any set of tables. Because of the sheer number of tables,
answering simple business questions such as, "Which customers in the European

Data Legibility In Decision Support Systems Marc Demarest

Revision 7.4 Page 5 of 5 1/24/2002
Copyright © 1996-2002 by Marc Demarest

demarest@hevanet.com

community purchased goods in excess of $10,000 or 50 units during the first
quarters of 1990, 1991, and 1992?" presents a significant obstacle to the business
user. Even if users can determine which of the 1000 tables may contain parts of the
answer, they must determine how to join those tables. Unfortunately, the tables
share multiple keys and can be joined in several different ways. Worst of all, users
discover that the answer to the business questions differs substantially depending on
which keys they use and the order in which the tables are joined. Also, the user has
no tools to determine which possible answer is correct.

• Cryptic naming conventions and data formats. As trivial as it may seem, one of the
primary reasons why business users cannot read normalized schema is that
normalization encourages cryptic, shorthand naming conventions for columns and
tables. These naming conventions often require a glossary for translation into end-
user terms. While such naming conventions are not useful for OLTP applications,
they are not useful for DSS applications. When OLTP applications privy to naming
conventions access the database, end users to do not see table or column names,
and problems do not arise.

• In addition, normalized schemas store data in illegible forms. Dates, for example, are
commonly stored as a long number representing "the number of days since April 1,
1971" or some mathematical construct. While a computer program can calculate the
date very nicely from this number, a human user can make little sense of it.

All these characteristics support data integrity, which is perfectly appropriate for OLTP
environments. However, none supports data legibility, which works against the DSS
environment's business goals. Business analysts are resolutely non-technical; most do
not understand the concepts of joins, foreign keys, or primary keys, nor do they
understand the design principles (that is, normalization) behind the data capture
process. Finally, business analysts pursue nonlinear, heuristic, and sometimes wholly
intuitive avenues of analysis and discovery, using tools designed to support these
interrogations. Unfortunately, these discovery processes can be misinterpreted and their
value lost when the data does not cooperate.

Normalization supports the DBA's agenda and the company's goal of data integrity
within the data-capture process and the OLTP environment. But it ultimately results in an
expensive DSS that does not support corporate decision making, and is not used by the
majority of business analysts because they cannot understand the system's information,
and therefore cannot construct basic business questions.

Data Legibility In Decision Support Systems Marc Demarest

Revision 7.4 Page 6 of 6 1/24/2002
Copyright © 1996-2002 by Marc Demarest

demarest@hevanet.com

Two Data Legibility Strategies

Once data legibility is thoroughly considered in a database design process focusing on
decision support, DSS architects typically opt for one of two strategies to achieve
legibility:

1. Reschematization. Decision-support data is extracted from one or more normalized
schemas into another denormalized schema designed to end-user specifications,
and supporting the business model of the people asking the business questions.

2. Aliasing. Using one or more of the technologies described later, a data "model"
approximating the business analysts' business models is interposed between the
business analysts and a data set. This model typically remains highly normalized and
illegible.

Both strategies offer the potential for legible data. The choice of approach is or should
be, based on the business goals of the DSS system itself, the stated and derived needs
of the analyst communities, the organization's strategic IT directions, and a simple
cost/benefit analysis of the two strategies applied to the given situation.

Reschematization

DSS architects committed to reschematization as a data-legibility strategy typically have
four common characteristics. First, they understand their end users' business models
and decision-making processes, and are committed to implementing DSS environments
supporting those models and processes. Second, they are committed to enabling the
personal productivity tools already on knowledge workers' desktops, and buying
commercial off-the-shelf technology rather than hand-coding DSS environments. Third,
they are interested in client/server computing as a next-generation business-automation
strategy. And fourth, they are interested in harnessing the relative power of the server to
bear most of the data-legibility burden.

Furthermore, DSS architects committed to data reschematization understand that a
database schema can be used as a powerful tool to alleviate the already excessive
processing burden on client workstations. The database schema can also eliminate the
need to write and maintain custom client/server software, and is able to maintain an
optimal degree of flexibility with respect to knowledge worker's changing information
requirements. Focusing on the design of the DSS database can result in all of these
benefits.

You can align database schemas somewhere along the spectrum shown below.

Data Legibility In Decision Support Systems Marc Demarest

Revision 7.4 Page 7 of 7 1/24/2002
Copyright © 1996-2002 by Marc Demarest

demarest@hevanet.com

Big Wide Table
(BWT) Schema

Data Lists

Data Cubes &
Star Schema (MDS)

First Normal Form

Second Normal Form

Third Normal Form

Fourth & Fifith
Normal Form

NORMALIZED
FORMS

DENORMALIZED
FORMS

Figure 1 -- Schema Spectrum

Typically, most OLTP schemas are normalized to third normal form; the fourth and fifth
normal forms are difficult to design and typically unnecessary for meeting commercial
data-integrity requirements. The vast majority of decision-support schemas, which are
implemented in spreadsheets on individual knowledge workers' desktops, are single-
table schemas (that is, big wide tables [BWTs] custom-built by the knowledge worker,
usually by reentering data into the spreadsheet application or into a PC database like
Microsoft Access from one or more IS reports).

After working with a generation of spreadsheet and PC LAN flat-file database managers,
business analysts understand and use BWT schemas daily. Although you can
theoretically obtain a BWT schema from any normalized schema in one operation (called
a full outer join), BWT schemas are impractical in large-scale decision-support
applications because they are so big: The resultant table is too wide (sometimes
containing hundreds so columns) and too long (often in the hundreds of millions of rows)
to be directly navigable.

In addition, BWT schemas are inefficient in two dimensions: They do not use disk space
efficiently and cannot be processed efficiently at query time when the data set is more
than a few megabytes in size. As such, DSSs have, over the years, developed decision-
support schema models that maintain the required legibility levels, but are closer to
normal form schemas than BWT schemas. Two of these prototypical schemas -- the

Data Legibility In Decision Support Systems Marc Demarest

Revision 7.4 Page 8 of 8 1/24/2002
Copyright © 1996-2002 by Marc Demarest

demarest@hevanet.com

data cube and the data list -- are worth exploring to understand how decision-support
schemas can support the question-building process underlying a DSS.

The Data Cube

The data cube, championed by Red Brick Systems and other DSS vendors, is based on
three fundamental insights about the business models that analysts use during the
question-building process:

1. Analysts are always after facts and statistics, such as units sold, dollars in revenue
generated, and so forth.

2. Analysts always approach facts through business dimensions; for example, the
business's products or services, the business's target markets, and the channels
through which products or services reach these markets.

3. Time is always important to business analysts.

Thus, a data cube supporting a drug store chain's marketing department would look
similarly to the diagram below.

PRODUCTS

SALES

PROMOTIONS

STORES

TIME

Figure 2 -- Sample Data Cube Schema

The Sales table in this example contains all the business facts: units sold, dollars sold,
payment method, and so forth. All the remaining tables are key business dimensions
that are typically organized to reflect the natural organization of those dimensions. For
example, suppliers provide products to the company for sale in the retail stores, while
stores are typically organized into regions, each of which is made up of districts with
more than one store. Therefore, the dimensions reflect the knowledge worker's model of

Data Legibility In Decision Support Systems Marc Demarest

Revision 7.4 Page 9 of 9 1/24/2002
Copyright © 1996-2002 by Marc Demarest

demarest@hevanet.com

that dimension -- the way the people asking the business questions perceive the
business.

The data cube is admirably suited to several common question-building models,
including the progressive refinement model, in which a question begins simply. "Tell me
which stores sold suntan lotion," and ultimately reaches the desired level of specificity
and complexity: "Tell me which stores in Southern California sold more than 1000 units
of the Delta Products Number 2 suntan lotion supplied by Acme Distributors during the
months of November and December"; and the cross-temporal model in which a question
involves multiple points in time? "How is suntan lotion selling an Montana now versus
this time last year and the year before that?"

In addition, the data cube promotes high levels of legibility within the data itself. For
example, dates within the Time table are always organized into a clear and immediately
legible hierarchy of time, in which years are divided into quarters, which are subdivided
into months, weeks, and days. The column names of the Time table are year, quarter,
month, week, and day. Moreover, there is one -- and only one -- obvious join path to
retrieve data from the Fact table; no mistakes are possible. Some DSS technologies
designed for the data-cube schema do not require that joins be specified to process
queries.

Intellectually, the data cube, or "star schema," has several important antecedents. In
fact, the first examples of "normalized" schemas defined by Codd and Date in their
groundbreaking normalization work were data-cube schemas. Only later did the
normalization discipline begin to produce complex normalized schemas with hundreds of
tables and multiple join paths.
Database design experts at IBM, Metaphor, and other DSS technology leaders have
worked for years with variations of the data-cube schemas; although they often call
these structures multidimensional databases, multikey files, or grid files. In addition, PC
software vendors have been working for years on multidimensional spreadsheet
technology embodying the concepts underlying the data-cube schema. Today, the data-
cube schema is one of the best practical methods for implementing legible DSSs.

The Data List

Like the data cube list is based on a set of fundamental ideas about how end users
process information. But unlike data cubes, which assume a set of facts and a set of
dimensions to drill into those facts, the data list recognizes that 1) some of the work that
analysts do is within one or two dimensions, and 2) some DSSs support a business
model in which only two important objects exist: customers and transactions.

A data-list schema supporting the marketing department at a mail-order catalog house
would look similar to the figure below.

Data Legibility In Decision Support Systems Marc Demarest

Revision 7.4 Page 10 of 10 1/24/2002
Copyright © 1996-2002 by Marc Demarest

demarest@hevanet.com

CUSTOMERS

SALES

Figure 3 -- Sample Data List Schema

All relevant customer information -- name, address, zip code, credit limits, and so forth --
is stored in a relatively static Customer table, while all the information about sales --
product sold, quantity, cost, shipment method, and so forth -- is stored in a relatively
dynamic Sales table. There is one join path, which is probably facilitated by a common
key such as customer ID.

Because data lists reflect a basic understanding of the knowledge worker's business
models, they are particularly well-suited for some proprietary DSS environments like
Teradata. For this reason, retail sales DSS designers and DSS architects in
telecommunications companies frequently employ data-list schema when using these
kinds of proprietary systems, but tend to move to data cubes when using conventional
RDBMS technology or proprietary MDDBMS technology (sometimes referred to as
OLAP).

Benefits of Reschematization

Reschematization avoids the problems associated with normalized schemas, and
embeds data legibility into the DSS data store itself. Instead of designing the schema to
support a technical goal such as data integrity, legible schemas embody (and therefore
enforce) the business models already in use within end-user communities. This makes
the data immediately legible to knowledge workers. Therefore, knowledge workers can
use the data schema to frame and clarify their questions to ensure that the answers they
retrieve are the only possible answers. In turn, this immediate legibility lets knowledge
workers use commercial off-the-shelf client tools to access and analyze the data.

Data Legibility In Decision Support Systems Marc Demarest

Revision 7.4 Page 11 of 11 1/24/2002
Copyright © 1996-2002 by Marc Demarest

demarest@hevanet.com

Costs of Reschematization

Reschematization involves more design work than does replicating normalized schemas,
and requires that data destined for DSSs be reengineered as it moves from the
production systems capturing the data to the decision-support store. As such, the data-
extraction process becomes more complex as columns of data are reorganized,
transformed, and eliminated from production source data.

Reschematization in many IS organizations also requires that data architects and DBAs
put aside their training in normalization techniques and return to more business model-
and user-oriented database design techniques. In addition, off-setting the relatively
higher costs of data extraction, reschematized data forces the cost of client/server
connectivity to its lowest possible point by enabling organizations to purchase, rather
than build, their client/server connectivity options.

Data Legibility In Decision Support Systems Marc Demarest

Revision 7.4 Page 12 of 12 1/24/2002
Copyright © 1996-2002 by Marc Demarest

demarest@hevanet.com

Aliasing

Reschematization sets out to make data immediately legible to end users. Aliasing
strategies interpose, between and data and end users, one or more "models" that
translate or map between end-user business models and data may be completely
illegible to decision makers, as shown below.

DSS DATABASE
(MULTI-

DIMENSIONAL
SCHEMA)

DSS DATABASE
(VARIABLE
SCHEMA)

HUMAN
ANALYST

HUMAN
ANALYST

CLIENT
INTERFACE

CLIENT
INTERFACE

MODEL
(IN SOFTWARE)

Reschematization Model

Aliasing Model

Figure 4 -- Aliasing Versus Reschematization

For this reason, aliasing is sometimes called model-based DSS, while reschematization
is referred to as data-based DSS.

• DSS architects committed to aliasing as a data-legibility strategy have several of the
following characteristics:

• They may or may not understand their end users' business models.

• They are committed to implementing DSS environments that support IS guidelines
regarding normalization.

• They have access to substantial programming resources or sophisticated design
tools in order to build the decision-support model software.

• They work in IS organizations committed to building custom client applications for
DSSs.

• They are interested in client/server computing as a next-generation business
automation strategy but will continue to support host-based, terminal-oriented
decision support.

• They support business models that can be coded into a DSS application without fear
of frequent rewrites (because the business models are long-lived).

• Furthermore, these DSS architects believe that database schemas are not the
proper place to focus on database legibility, rather, they believe that all OLTP design
model is appropriate for DSSs. They also feel that the cost of data reengineering
implicit in reschematization is too high.

Data Legibility In Decision Support Systems Marc Demarest

Revision 7.4 Page 13 of 13 1/24/2002
Copyright © 1996-2002 by Marc Demarest

demarest@hevanet.com

Aliasing strategies typically result in one of the application architectures illustrated below.

DSS DATABASE
(VARIABLE
SCHEMA)

HUMAN
ANALYST

CLIENT
INTERFACE

MODEL
(IN SOFTWARE)

Server Aliasing

DSS DATABASE
(VARIABLE
SCHEMA)

HUMAN
ANALYST

CLIENT
INTERFACE

MODEL
(IN SOFTWARE)

Client Aliasing

DSS DATABASE
(VARIABLE
SCHEMA)

HUMAN
ANALYST

CLIENT
INTERFACE

MODEL
(IN SOFTWARE)

Three-Tiered Aliasing

SERVER PLATFORM CLIENT PLATFORM

CLIENT PLATFORM
SERVER

PLATFORM

SERVER
PLATFORM

SERVER
PLATFORM

CLIENT PLATFORM

Figure 5 -- Aliasing Architectures

A client aliasing application provides a client-resident mapping between an end user's
view of the data and that data itself. A server aliasing application divides the application
architecture along identical lines, but places the mapping software on the server
platform, with the data set rather than the end-user tools. Repository models adopt a
three-tiered client/server architecture, placing the modeling application -- typically in the
form of a metadata repository -- in a location distinct from either the end-user tools or the
data sets on which the repository keeps metadata.

Client Application Aliasing

Client application aliasing strategies, supported by the explosion of PC-based rapid
application development (RAD) tools, are by far the most common aliasing strategies. In
a nutshell, these strategies call for an "intelligent" application that presents a visual
(iconic or pictorial) representation of data that end users can manipulate. It can then
generate SQL and retrieve data, based on the end user's path through the application.
This kind of aliasing strategy is used typically in environments where the sophistication
of the end user is a major concern, and where the available commercial off-the-shelf
tools are considered sufficiently inadequate to warrant substantial in-house investment in
application development. In the commercial software marketplace, products such as
Business Objects from Business Objects Inc. have adopted this client application
strategy by letting DBAs encapsulate SQL fragments and entire queries as commonly
used business objects for end-user manipulation.

Data Legibility In Decision Support Systems Marc Demarest

Revision 7.4 Page 14 of 14 1/24/2002
Copyright © 1996-2002 by Marc Demarest

demarest@hevanet.com

Server Application Aliasing

Server application aliasing follows the same general application development model as
client application aliasing, but makes a different choice with respect to the model's
location. Typically, this kind of strategy places the modeling application on the server
rather than on the client for several reasons:

• The DSS environment's goal is to provide end-user access to a "report catalog" in
which reports are maintained on the server.

• The problems associated with version control of client applications in large
client/server environments (with more than 100 client workstations) is difficult and
expensive.

• The client workstation is not seen as reliable in terms of mean time between failure
or general stability.

• The modeling application uses next-generation artificial intelligence (AI) or expert-
system technology, which requires central management and more processing power
than a client workstation can provide. This technology also feeds on all the data in
the DSS data store to answer business questions.

• The model embedded in the modeling layer is seen as a shared resource and is
therefore located on the server platform.

Holos from Holistic Systems Inc. and IDIS from Intelligence Ware Inc. are examples of
top-flight commercial DSS applications that implement a server modeling application. In
fact, so-called OLAP applications generally ought to be seen as proprietary aliasing
applications employing server-based modeling. Unfortunately, the limitations of most
OLAP technologies’ MDDBMS components – proprietary databases built into the
aliasing application to solve a data access problem that disappeared almost a decade
ago – limit the usefulness of these applications in many cases.

Repositories and Directories

Organizations that have embarked on enterprise data-modeling activities, or are bent on
giving end users direct access to production system data, typically turn to repositories to
provide the aliasing and mapping functions for client applications. In this version of the
aliasing architecture, client applications interact with a directory that, at the very least,
contains instructions for locating each DSS data source on the network. The applications
also interact with this directory when interpreting each DSS data source's system
catalog. The client application then uses this information to represent the combination of
several physical data sources as one data set to the end user, who can then "join" data
sets from different physical databases.

In extremely sophisticated cases, the repository actually provides a nonstandard query
language to allow client applications, which are still custom-coded, to interact with the
repository. The repository then translates the client application request into a set of SQL
queries to launch against multiple data sources.

Data Legibility In Decision Support Systems Marc Demarest

Revision 7.4 Page 15 of 15 1/24/2002
Copyright © 1996-2002 by Marc Demarest

demarest@hevanet.com

While there are no full commercial examples of this technology, some companies have
cobbled together their own working versions. Repository strategies generally require a
well-established enterprise data architecture, an extreme amount of available network
bandwidth, and sophisticated development tools that are not yet readily available in the
commercial marketplace. They also often reinstate the original DSS problem: query
drain on production systems and applications.

Benefits of Aliasing

Ideally, aliasing strategies allow for a finely tuned match between end users' business
models and data sets that have not been reschematized for DSS. In practice, aliasing
strategies have only been able to achieve the same level of legibility provided by
reschematized data stores -- making the choice between reschematization and aliasing
largely a matter of cost comparison over the average life of the DSS application.

Costs of Aliasing

The costs of aliasing obviously involve the development and maintenance of the
software providing the aliasing function. These costs are well-understood and
substantial. As such, the key question when evaluating aliasing strategies is how much
value the application provides beyond simply mapping between the end user and data.

In some technical applications, such as AI or expert system-based decision support,
server-based aliasing architectures have been instrumental in putting the resource-
hungry AI and expert system engines at the disposal of business analysts. In business
environments such as healthcare, where data is complex and associated with behavior,
the growth of model-based DSS is natural and appropriate. Even healthcare-practice
managers have difficulty comprehending the complexity of the relationships between
healthcare providers, regulatory agencies, and clients, and require models to
"remember" and present intuitively the nature of those relationships. In other
environments, knowledge workers thoroughly understand their business models and are
sufficiently skilled with their desktop tools to dispense with intermediate aliasing if the
schema itself is legible.

Data Legibility In Decision Support Systems Marc Demarest

Revision 7.4 Page 16 of 16 1/24/2002
Copyright © 1996-2002 by Marc Demarest

demarest@hevanet.com

Conclusions

Data legibility requires an architecture designed to produce easily assimilated data. Both
reschematization and aliasing strategies offer approaches to achieve data legibility, and
have historically produced similar results, leaving the choice of strategy to be determined
by comparative cost, as well as IS and corporate strategies.

Aside from repository-based aliasing strategies that are not yet commercially viable, the
question of which data-legibility strategy to choose cannot be answered definitively on
technical grounds. Simple replication and consolidation strategies do not provide data
legibility, but the strategies providing legibility, including data reschematization, client
application aliasing, and server application aliasing, are all technically feasible. As such,
the strategic decision must be made based on business automation, cost, and
performance criteria.

Reschematization strategies are more in line with organizations that are committed to
the "buy side" of the buy-versus-build decision, as well as with those companies
decreasing in-house application development and maintenance, and data-enabling their
knowledge workers' personal and team productivity environments.

Aliasing models are more in tune with organizations that favor building rather than
buying. These companies have substantial in-house client/server software development
and maintenance expertise, and believe that custom client applications will deliver
substantial end-user value over commercially available substitutes.

In the long term, reschematization is preferable in terms of deployment and maintenance
costs. If the connections between the production systems and the data warehouse are
well-designed, and data reengineering is performed on the data store instead of the
production system, reschematization delivers legible data while avoiding costs
associated with application software development and maintenance.

Performance is not a characteristic of architectures; it is the result of an architecture's
implementation in a system configuration. Because reschematization has a minimal
number of software layers, it is likely to perform better than aliasing. However, the
ultimate performance of the DSS environment depends on the system's server and
DBMS components.

